勤益科大機構典藏:Item 987654321/7072
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 2928/5721 (51%)
造访人次 : 376031      在线人数 : 743
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/7072


    题名: The Box-Cox Transformation-Based ARFNNs for Identification of Nonlinear MR Damper System with Outliers and Skewness Noises
    作者: 陳碧雲
    贡献者: 電機工程(學)系
    日期: 2012-01
    上传时间: 2018-01-07 11:27:48 (UTC+8)
    摘要: In this paper, the Box–Cox transformation-based annealing robust fuzzy neural networks (ARFNNs) are proposed for identification of the nonlinear Magneto-rheological (MR) damper with outliers and skewness noises. Firstly, utilizing the Box-Cox transformation that its object is usually to make residuals more homogeneous in regression, or transform data to be normally distributed. Consequently, a support vector regression (SVR) method with Gaussian kernel function has the good performance to determine the number of rule in the simplified fuzzy inference systems and initial weights in the fuzzy neural networks. Finally, the annealing robust learning algorithm (ARLA) can be used effectively to adjust the parameters of the Box-Cox transformation-based ARFNNs. Simulation results show the superiority of the proposed method for the nonlinear MR damper systems with outliers and skewness noises
    關聯: Applied Mechanics and Materials
    显示于类别:[電機工程系(所)] 【電機工程系所】期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NCUTIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈