勤益科大機構典藏:Item 987654321/7072
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 2928/5721 (51%)
造訪人次 : 387702      線上人數 : 231
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncut.edu.tw/handle/987654321/7072


    題名: The Box-Cox Transformation-Based ARFNNs for Identification of Nonlinear MR Damper System with Outliers and Skewness Noises
    作者: 陳碧雲
    貢獻者: 電機工程(學)系
    日期: 2012-01
    上傳時間: 2018-01-07 11:27:48 (UTC+8)
    摘要: In this paper, the Box–Cox transformation-based annealing robust fuzzy neural networks (ARFNNs) are proposed for identification of the nonlinear Magneto-rheological (MR) damper with outliers and skewness noises. Firstly, utilizing the Box-Cox transformation that its object is usually to make residuals more homogeneous in regression, or transform data to be normally distributed. Consequently, a support vector regression (SVR) method with Gaussian kernel function has the good performance to determine the number of rule in the simplified fuzzy inference systems and initial weights in the fuzzy neural networks. Finally, the annealing robust learning algorithm (ARLA) can be used effectively to adjust the parameters of the Box-Cox transformation-based ARFNNs. Simulation results show the superiority of the proposed method for the nonlinear MR damper systems with outliers and skewness noises
    關聯: Applied Mechanics and Materials
    顯示於類別:[電機工程系(所)] 【電機工程系所】期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NCUTIR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋